Restoring the Residual Speaker Information in Total Variability Modeling for Speaker Verification
نویسندگان
چکیده
In this paper, we introduce the residual space into the Total Variability Modeling by assuming that the speaker super-vectors are not totally contained in a linear subspace of low dimension. Thus the feature reduction carried out by Probabilistic Principal Component Analysis(PPCA) leads to information loss including information of speaker as well as channel. We add the residual factor to restore the missing speaker information which is lost during the PPCA process. To utilize the recovered information effectively, we propose two fusion methods that combine the principal components with the residual factor. We compare the fusion results that are obtained with direct scoring and Support Vector Machines for classification, respectively. The experiments on NIST SRE 2006 show that the performance can be improved consistently by involving the residual factor, e.g. the best result achieves 6% relative improvement on Equal Error Rate(EER) compared to the baseline system.
منابع مشابه
Using Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملStudy on the effects of intrinsic variation using i-vectors in text-independent speaker verification
Speaker verification performance is adversely affected by mismatches between training and testing data in intrinsic variations. This paper explores how recent technologies focused on modeling the total variability behave in addressing the effects of intrinsic variation in speaker verification. The effects of intrinsic variation are investigated from six aspects including speaking style, speakin...
متن کاملCompensation of Intrinsic Variability with Factor Analysis Modeling for Robust Speaker Verification
Performances of speaker verification systems are adversely affected by intrinsic variability in the real world applications. In this paper, factor analysis approaches of Joint Factor Analysis (JFA) and i-vector modeling are used to address the effects of intrinsic variations for robust speaker verification. The speaker variability and intrinsic variability are modeled with the speaker and sessi...
متن کاملPLDA based speaker recognition on short utterances
This paper investigates the effects of limited speech data in the context of speaker verification using a probabilistic linear discriminant analysis (PLDA) approach. Being able to reduce the length of required speech data is important to the development of automatic speaker verification system in real world applications. When sufficient speech is available, previous research has shown that heav...
متن کامل